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A first-principles calculation of the initial decay of a current-carrying state is 
used to infer the electrical resistivity of interacting fermions (electrons or holes). 
This approach is useful when it is impractical to apply the Kubo formalism. 
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1. INTRODUCTION 

Sulewski et al. I~) noted that free carrier electrodynamics in the normal state 
( T >  T,.) of the high-temperature superconductors are better parametrized 
by an anomalous scattering rate oc I~1 near the Fermi surface (FS) than 
by the conventional ~2 of Landau Fermi liquids (2~ (LFL). Numerous other 
studies have found the dc electrical resistance in the normal phase of the 
high-temperature super conductors to be a linear function of the tempera- 
ture T over a wide range of temperatureJ 3) One would like to understand 
the range of possibilities from a purely theoretical perspective. 

Although Kubo's expression for the electrical conductivi ty  is available 
(and it is exact in principle), in practice his formalism is quite cumbersome 
when two-body forces are strong (see review in ref. 4)2; the main problem 
is that the dc conductivity is inversely proportional to the strength of the 
scattering mechanism and thus has no straightforward expansion in powers 

i Physics Department, University of Utah, Salt Lake City, Utah 84112. 
2 The first formally exact procedure for including many-body effects in the Kubo formulas for 

the Fermi liquid was due to Langer, ~D who later developed the Ward identities for impurity 
scattering. (51 The .Ward identities and their solution for the electron-phonon scattering 
mechanism in the same context were first obtained by Engelsberg and Schrieffer. 16) These 
works are reviewed in the book by Mahan. 17i lm{ l/r,} is evaluated in his Eqs. (5.4.11) and 
related to conductivity in Eq. (7.1.8); Kubo formulas and the quantum Boltzmann equation 
a r e  derived in his Chapter 7. 
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of the concentration of the concentration of scatterers or their scattering 
lengths. The standard expression a = ,e2r/m*( 1 + icor) suffices to show that, 
while at high frequencies one can dispense with an intimate knowledge of 
the scatterers, for ~or ,~ 1 one needs to compute the lifetime r for momentum 
decay, which is generally different from the quasiparticle lifetime. If one 
seeks to use theory to interpret experiment, in order to reveal the source of 
the scattering mechanism, then is is not satisfactory just to "patch on" a 
collision lifetime. 

But that is just one aspect of the problem. A second concern involves 
m*. Is one required to include proper self-energy corrections in m*, which 
in the CuO2-based high-T, superconductors might amount to a large, 
albeit unknown, correction? Moreover, while the electrical resistivities in 
various scattering channels are additive (Mathiessen's empirical rule), this 
is not true of the individual conductivities. Therefore when considering 
several such mechanisms it is more "natural" to calculate the resistit, ity of 
each. 

A remedy might appear to lie in transport equations, such as the 
Boltzmann equation, with appropriate electron-impurity and electron- 
phonon collision integrals designed to yield the resistivities directly. But 
this simplification is illusory. The classical Boltzmann equation is h7 
principle hlvalid in strongly interacting quantum systems, as it is based on 
an assumption that the conduction particles undergo ballistic trajectories 
between collisions. Still, faute de mieux, Boltzmann's equation is commonly 
used in high-T,-related calculations (e.g., ref. 9) together with a (still con- 
troversial) assumption that the charge carriers in the two-dimensional 
CuO,  planes are in one-to-one correspondence with free fermions. 3 Of 
course, the use of the ordinary Boltzmann equation is a staple in ordinary 
metals, where this assumption is not controversial/t~l 

The question posed in the present paper is, can one resolve the 
problem from first principles without unnecessary approximations, but in a 
more physically intuitive way? 

In partial resolution to this question, I shall infer the resistivity 
directly from the decay of a very specially chosen homogeneous current- 
carrying state. This decay can occur either through various types of 
impurity scattering or through the action of the ubiquitous electron- 
phonon interaction. It is not required to make any assumptions regarding 
the strength or nature of the two-body interactions, which could be the 
Coulomb interactions, or more simply, the pointlike (Hubbard) repulsive 
forces. However, for definiteness, we do evaluate the resulting formula 

3 For evidence supporting the existence of a Fermi surface, see, e.g., the survey by Pickett 
e l  a / .  II~ 
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approximately (using the RPA) and apply the results to various specific 
cases. Our results are then found to be in substantial agreement with other 
forms of transport theory, ~4 91 although a discrepancy does appear as T ~  0 
for purely phonon scattering: with our formalism one calculates a finite 
decay time for the current-carrying state even at T=O, whereas conven- 
tional theory has the resistance vanishing as T 5. A future examination of 
this descrepancy may well shed some needed light on the ways in which 
strongly interacting systems shed their momentum. 

In the present approach, we simply suppose a uniform charged particle 
density ~ to be initially h7 thermodynamic equilibrium in a moving coordinate 
system of velocity vo where it is parametrized by a given chemical potential 
/t and a temperature T. The particles are subject to the periodic potential 
of the solid as well as to their usual two-body forces but not, for t ~< 0, to 
any scattering mechanism capable of causing the momentum to decay. 
Thus, initially our system is a perfect conductor (although technically, it is 
not a superconductor.) The current is a constant of the motion for t ~< 0, 
and the current density is just ! -  ~Vo. 

At t = 0, we "turn on" those scattering mechanisms (either impurities 
or phonons or both) which ultimately bring the current to a halt, and 
calculate the initial rate of decay of the current, OI/Ot, using the first Born 
approximation. This approximation is sufficiently accurate, if for simplicity, 
one assumes all the momentum-nonconserving scattering mechanisms to be 
weave. However, there is no limitation placed on the momentum-conserving 
two-body forces. 

The result is found to be of the form - I / r ,  where r is independent of 
Vo in the limit IVol--*0. If there are several scattering mechanisms, each 
responsible for an inverse lifetime l/r,,, in the lowest Born approximation 
they are additive: 1 / r = ~ , ,  1/~,,, in accord with Mathiessen's rule. (Of 
course, there can be interferences in higher order, as in the Kondo effect.) 
In lowest order, then, the total resistivity is p = Z,, P,, = m*/~'e2r with m* 
just the fi'ee particle mass (i.e., the mass computed in the absence of two- 
body forces among the charge carriers). 

Note that the many-body "quasiparticle mass" (with m* determined in 
part by the proper self-energy corrections Z'k(09) due to two-body inter- 
actions) does not appear in the present formalism. However, it will be 
necessary to know the one-body momentum distribution function f ( k ) -  
(c~' ~ Ck.,,)w calculated in the presence of the two-body forces. But as f ( k )  
is, in fact, a function of L'k((o), the many-body aspects have not been 
altogether finessed! 

To display our results in simplest form, we shall assume in this paper 
that the solution to the one-particle Schr6dinger equation yields the energy 
of an individual fermion as e(k)= hZkZ/2m *, its momentum is hk, and its 
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velocity is v=hk/m*, and m* is a (scalar) constant. Generalization to 
anisotropic masses or to arbitrary band structures is straightforward (even 
though it is not trivial) and is omitted. 

The one-body Hamiltonian for a larger number of particles is 

Ho = ~ [e(k)- / l ]  C~aCkrr= E [e (k) -p]  nk. 
k . a  k . a  

(i) 

The total momentum operator is 

Pop= Z hkck~Ck~,= ~ hknk~ (2) 
k, tr k ,o-  

and, by the above, it is proportional to the particle-current operator; two- 
body forces play no role in the definitions of these operators. 

In units such that the lattice parameter a = 1, the particle-current 
density initially is I: 

I = N - I  E (kk/m*)(n k koa)TA=VoN=' ~ -~. (llka)TA:Vo)'l 
k , o  k,o" 

(3) 

where hko=m*Vo. The subscript TA stands for "thermal average" in an 
ensemble described by W = Ho + 2H2, where H2 contains the two-body 
interactions and 2 is a coupling parameter set equal to 0 or 1. The identity 
I = Vow, demonstrates the proportionality of two initially conserved quan- 
tities, particle number and current. 

2. THE DERIVATION 

We assume the eigenstates of ~ = H o  (the kinetic en e rg y )+2 H  2 
(momentum-conserving two-body interactions, e.g., Coulomb repulsion) 
are known. The Hamiltonian ~ governs the dynamics of what is assumed 
to be a low-density nonmagnetic fluid of fermions. In such low-density 
systems the Coulomb interactions are typically quite significant. But two- 
body forces depend only on the separation of an interacting pair, and thus 
conse~'X,e momentum to within a reciprocal lattice vector hK,,. Thus, at 
t < 0 ,  prior to introduction of some specific scattering mechanisms, the 
eigenstates of H can also be chosen to be eigenstates of Pop in (2) with 
eigenvalues P. 

There is no need to worry about "Umklapp," the discontinuous 
change in P by some integer multiple of a reciprocal lattice vector hK,, 
(where the lost momentum is given lap to the massive lattice.) This process 
is akin to diffraction, and requires that kr  be O(n/a). But at low densities 
kv<<n/a; therefore Umklapp is an essentially negligible mechanism for 
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current decay via the two-body collisions. This is one reason we limit the 
discussion to a low-density fluid; the other is the applicability of the effec- 
tive-mass approximation. With these assumptions momentum and particle 
current are conserved and proportional to each other. This allows us to 
label exact eigenstates [cx, P )  of ~'~ by two quantum numbers: the energy 
E,  and the momentum P. 

The non-momentum-conserving perturbations H '  will now be tacked 
on and treated in lowest-order perturbation theory. These cause current to 
decay while, on average, preserving the homogeneity of the density of 
carriers. The scatterers either are nonmagnetic impurities H; randomly 
distributed over N/si tes  at R i ( j  = 1 ..... N), 

H'~=N-B EEeiqRJV(q ) Z C~+q, oCk, o (4) 
q j k , o  

or they are randomly distributed magnetic impurities, 

H ; - N - ' Z Z e ' q R ' U ( q )  E Jg(a,a')C~+q.o, ck, o (5) 
q j k ,a .a '  

where ~/tt' is one of 3 Pauli matrices. And finally, there are always the 
phonons: 

H~ _ oh = ~ t~(q)(aq + a*q )(hogq/ho9 o N)J/2 ~ , Ck+q, aCk. a (6) 
q k.a  

governed by a Hamiltonian which, in the Debye model, is simply 

Hp,=~h~oua*aq, with oJu~sq for q<rc  and oJ~=o9 o (7) 
q 

As the couplings V(q), U(q), or "V'(q) are assumed weak, each 
individual scattering mechanism can be examined separately. And because 
there is no interference among channels in lowest Born approximation, the 
scattering rates are additive in agreement with Mathiessen's empirical rule. 
Kondo-type phenomena arising from higher-order interferences among dis- 
tinct scattering mechanisms could ultimately can be examined by extending 
the present formalism to the second Born approximation. 

3. NONMAGNETIC IMPURITY SCATTERING 

The texbook formula for the rate of decay w of initial states let) into 
final states [/3) in the first Born approximation, often referred to as 
"'Fermi's golden rule," is w =  2~/h ZI~ (IM-E-~--/~IZ)TA 6(E~--E~), where 
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M.E.~_/~ stands for the corresponding matrix element of a current-noncon-  
serving per turbat ion H'. One averages over initial states (~) and sums over 
final states (fl). 

In lowest Born approximat ion  each type of m o m e n t u m  transfer can be 
considered a separate channel and treated individually. The rate of decay 
of the current density via momen tum transfer hq is governed by the 
opera tor  

H ' (q )  -- [ V(q)/N] ~ p(q) e ' q  R, (8) 
J 

r in which the density-fluctuation opera tor  p ( q ) - - Z k . , ,  k +q,.Ck,. is used 
for typographic  simplicity, Then, the rate of decay of an average current- 
carrying state by loss of a designated m o m e n t u m  hq is 

w(q) = 2rt/h ~ e -t~L' I(fll H ' ( q ) l a ) I ' - 6 ( E , - E t ~ ) / Z  

= 2nNt/h ~ e -t~E' I(V(q)/N) (fll p ( q ) l a ) ] Z b ( E , - E t ~ ) / Z  
~.f l  

where Z = Z exp - tiEs is the parti t ion function. If the impurities are seeded 
at random,  as we shall assume, then two-center terms { . . . # q  R . . . .  } 
all vanish upon averaging over positions, regardless of the strength of the 
scattering mechanism. As a result, the rate of total m o m e n t u m  decay in a 
specified momen tum channel, OP/Ot I q, is 

OP/Otlq= Zrt I V(q)l-' (Nt/N2)q ~ e -•E" 1(/31 p ( q ) l a ) I 2 6 ( E , - E t ~ ) / Z  

(9) 

In thermal equilibrium, the double sum is propor t ional  to 
lim,o~o {kTco-I  Im(~ - ~(q, 09)}. (7) This is our general result. 

Unfortunately,  this formula is in the form of a singular limit which 
cannot  be obtained directly. What  is more, according to our chosen bound-  
ary condition, the system is initially in thermal equilibrium in a moving 
coordinate system, e(q, co) is affected by the mot ion to O(vo), and we need 
to know the corrections precisely to that order. 

To illustrate the procedure we first compute  the trivial case of free 
fermions, which can be obtained directly. This provides a benchmark  for the 
interacting case. Setting ). = 0  in ._,'r we find that (9) yields s traightaway 
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dPl&t Iq = 4x I V(q)l 2 N,  

x N - ' -  ~ ~ ( k ' -  k) 6(q - k ' +  k ) fo (k  - ko) 
k k '  

x [1 - f o ( k '  - ko) ] 6(e(k) - e(k ' ) )  (10) 

where fo(e(k )), abbreviated fo(k ) = I- 1 + exp(e(k)  - It)/k T ]  - I, is the Fe rmi -  
Dirac distribution function for free fermions of energy e(k). As the carriers 
are initially in thermal ecluilibrium in the moving coordinate system, the k's 
in thefo ' s  in Eq. (10) are referred to an origin at ko. A factor 2 is included 
for ~ .  Summing over q to find the total rate of decay, and shifting the 
origin of k, k '  to k o, we obtain 

OP/~t=2xN, N 2 ~  q lV(q)l,- 6(q_k,  +k)6(e (k )_e (k , )_hq .vo  ) 
k k" q 

• {./o(k)[l - f o ( k ' ) ]  - f o ( k ' ) [  1 - f o ( k ) ]  } 

= 2nNtN "- ~ ~ q lV(q)12 &(e(k)-e(k + q ) - h q .  vo) 
k q 

x [ f o ( k ) - f o ( k  + q)]  (11) 

With ~U(e) the 3D one-particle density of states = (2x) 2 (2m,a~-/h2)3/,-x/~ 
and h2kv/2m * = l  t, one proceeds to the limit Ivol ~ 0 and obtains 

OP/Ot = 27tNt N -z  ~ ~ q I V(q)l z hq-Vo[-Sfo(k)/0e(k)] 6(e(k) - e(k + q)) 
k q 

(12a) 

= - h v o ( 6 x a  ) 'Nt  [ N - ' ~ q l  V(q)l -~ (m*a2/h2)'-.~)(h2q2/8m*)] 
q 

(12a') 

upon reintroducing the lattice parameter  a to fix the units: h2/m*a2~ 
O(1/6) • electron bandwidth.  Thus, the Olitial rate of decay of the current is 
exponential and characterized by an inverse lifetime l / r  o = -OP/Ot + P: 

l/ro=h(6rta,,m*) ' c,[N-'~qlV(q)l'-(m*a'-/h'-)'-./o(h2q2/8m*)] ( lga)  
q 

where c~=N,/N and , , t=NJN. (Note that the density-of-states factor 
results in l / to oc m*, a proport ional i ty  which is not usually highlighted in 
s tandard studies.) The corresponding resistivity is 

= ' ' - '  I " - -  ] 
Po h(6rta~t-e-) c I N i~. q iV(q)[2 (m.a2/hZ)Z./o(h,q,/8m.) (14a) 

q 
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where e is the charge of the carriers. If IV(q)l z is assumed constant, as is 
reasonable for a short-range scattering center, for kT~ Ix we have f0-~ 1 for 
q<2k v and ~ 0  for q>2k v. Then the above bracket [ . . . ]  oc k 2vac n 4/'~, 
and Po oc m*2:~ -2/3 for n ~ 1--not Po oc m*~ -~ as naively expected! 

The corresponding formulas in 2D are only marginally different: 
Eq. (12a') is replaced by 

OPlOt=-hvo(4rcaZ) iN, IN i~q i v(<l)l 2) l/z] 
C q J 

(12b) 

where Re(X) stands for the real part of (X) and again we assume kT~p. 
In 2D, Eq. (13a) is replaced by 

l/to = h(4rta 2) -1 (,~m*)- Icl 

x[N-i~qlV(q)12(m*a2/lfl)2Re(kv-(q/2)") -'/2] (13b) 
q 

and (14a) by 

Po = h(4rta2) -1 (~"e2) - Icl 

x[N-I~qlV(q)12(m*a2/h2)'-Re(k~-(q/2)2) -'/'-] (14b) 
q 

If IV(q)l z is again assumed constant, then the bracket [ . . . ]  ac k v oc ,~. 
Thus, in 2D, Po oc n-~ for n ,~ 1, the dependence on n (but not on m*) now 
being precisely as naively expected! 

Now, turn to interacting fermions (2=  1). For real values of x 
[such as h-t(E,-Etj)], it is convenient to use 6 ( x ) = f ( - x ) =  
(1/2rt)_ ~ S ~ dt exp ixt together with retarded or advanced Green functions 
in the evaluation of thermodynamic averages. (~2) As a first step, introduce 
the time-dependent operators p(q, t )=  ei"r'p(q)e-i'Ye' to simplify OP/Ot: 

3P/Ot=2nh-i ~,[V(q)l z (Ni/N)q {(1/2rt)J'~ dt N-I (p(q, t, p(-q,)-ra} 
q 

(15) 

The correlation function N-~(p(q, t)P(--q))TA is computed with the aid 
of the corresponding retarded Green function G(q, o~): 

N-l (p(q, t) P ( - q ) ) v A  

=(2rti)-' f dcoe'~~ og-iO+)-G(q, og+iO+)} (16) 
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We make use of Eq. (16) by first solving the equations of motion of 
G(q, ~)  (using standard RPA decoupling): 

f ( k  + q  - ko) - f ( k  - ko) 
G ( q , o ~ ) ~ h N  ' ~ h ~ o - - e ( - ~ + e ~ - ~ q )  x~- ' (q,~o)  

k,o" 

= hH(q, o5) x ~-I(q, co) (17) 

The above serves to define the polarization function H(q, oJ). Both the 
dielectric function e(q, ~o) and H(q, ~o) are to be evaluated in the moving 
system, with e being related to H in the usual way: 

e(q, co)= 1 - Uq H(q, m) (18) 

where U_ is the Fourier transform of the two-body potential and is a real 
variablefl Equation (17) serves to define H; we emphasize that both H and 
e are functions of ko. Insertion of (17) into (16) yields the correlation 
function: 
N - ' ( p ( q ,  t) p( --q))TA 

=(h/Uqg) I+-~  dc~ l--~Im{e-'(q'r176 1 

f 
+~- 1 1 

= 2h d m e  i ' t  
_ ~ e I~''  - -  1 N 

x ~  k { [ f ( k + q - k o ) - f ( k - k o ) - I  6 ( h m - e ( k ) + e ( k + q ) ) }  
[~(q, m){2 (19) 

Formally, this is similar to free fermions except that f ( k )  replaces fo(k) 
and I~(q,o~)l 2 appears in the denominator. In evaluating (15), we use 
1/2~ J" dt e i'~' in its symmetric form 1/2 x (3(m) + 6(-~o)). This requires that 
co be everywhere replaced by ( ~ x c e p t  in the singular term [e ~'~- 1]-*, 
which must be replaced by its symmetric part, - 1 /2 ,  before proceeding to 
the limit. After a shift of origin of k by k o, the energies e ( k ) - e ( k  + q )  are 
changed to e ( k ) - e ( k  + q ) -  hq 'vo  as before. So, finally, upon proceceding 
to the limit v o ~ 0, 

OP/Ot = 2teN, N-2 ~ ~ ~ q I V(q)/~(q)l 2 
k k '  q 

• 3(q - k ' +  k) 3 ( e ( k ) -  e ( k ' ) -  hq �9 V o ) [ f ( k ) -  f ( k ' ) ]  

= 2xNiN -2 ~ ~ q [V(q)/~(q)['-hq 
k q 

�9 Vo(Of(k)/Oe(k)) 6 ( e ( k ) -  e(k + q)) (20) 

'~ In the Hubbard model, Uq is independent of q; for the Coulomb gas with q~.n/a. 
Uq ~ 4rce2/q2a ~ in a 3D solid, and Uq ~ 2~e"/qa z in 2D. 



392 Matt is 

Except for two "minor" details, this expression agrees with that for free 
fermions, Eq. (12a). The differences brought about by the two-body forces 
are: (a) the static screening of the scattering potential (as first intuited by 
FriedelC~3)) by e-  ~(q) - e-  t(q, 0), which transforms a charged scattering 
center into a screened short-ranged potential or an uncharged scatterer 
into a much weaker one, and (b) replacement of dJo(e(k))/Se(k).~ 
- 6 ( e ( k ) -  p) by Of(e(k))/Oe(k), which is less strongly singular at #. When 
the two-body forces are strong, 8f(e(k))/ae(k) does not vanish away from 
the Fermi surface and, even at low T, differs considerably from the psuedo- 
delta-function ~l'p(e(k ) )/c~e (k). c t4) 

After a partial integration, we have 

1/r=h(6r~a~,m*)-' c, IN ~ ~ q l V(q)/e(q)l 2 (m*aZ/h:) 2 f(h2q2/8m*)] 
q 

(21a) 

in 3D. The resulting resistivity is 

r =  h(6na,,2e 2) to, I N  ' ~ ] q ,  V(q)/~(q)l 2 (m*a2/h2)2f(h'-q2/8m *)] 
q 

(22a) 

The similarity of Eq. (22a) with (14a) is striking. 
The expressions are again somewhat more cumbersome in 2D. 

Replacing (13b), we find 

l / r - :  h(4rta 2) I (nm*)  Ic i IN l ~ q lV(q)le.(q)l 2 (m*a21h2) 2 
q 

• I dk IOf/Okl Re(k2-(q/2) "-) ,.2] (21b) 

and replacing 14b), a resistivity 

p=h(4na 2) I(~,e2) Ir I I N  l y ' q  ]V(q)/~(q)]2 (m.a,_/h2)2 
q 

• I dk I~['/Ok I Re(kZ-(q/2)  2) t...2] (22b) 

In closing this section, we note that H(q, 0) is negative, thus e(q) is typi- 
cally > 1, even in some instances >> 1. 
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4. M A G N E T I C  I M P U R I T Y  SCATTERING 

Screening of magnetic impurities occurs via magnetic, not charge, fluc- 
tuations. Hence e(q, to)= 1 - UqH(q, co) in the above formulas is replaced 
by era,g( q, co)= 1 + U~xH(q, to), with U~x -measuring the strength of the 
exchange forces and 1/~m,g the paramagnetic enhancement (i.e., anti- 
screening!) factor, c~41 Unlike the dielectric function, em~g is typically < 1, 
and can even vanish on discrete points of surfaces signaling a magnetic 
instability for strongly interacting fermions. For the charged gas, the 
parameter U~x = O(e2/a) and, unlike Uq, it is approximately constant over 
the Brillouin zone, reflecting the short range of exchange forces in real 
space. In Hubbard's model, U and Uex are identical parameters. 

Thus, Eqs. (21)-(22) are immediately applicable for magnetic 
impurities, upon replacement of IV(q)/e(q)l 2 by IU(q)/emag(q)l-'. Like U~, 
the magnetic impurity's scattering matrix element U(q) also tends to be 
approximately independent of q. 

For dilute fluids, this substitution has important consequences. If U~., 
is large compared with /~, em~ will be small either near q = 0 or 2kv, and 
the resulting enhancement of scattering cross section for the magnetic 
impurities can be arbitrarily great. Such divergence in 3D signals 
emergence of a magnetic symmetry-broken phase. In 2D, however, Chen 
and Mattis ~141 have shown the new phase to be paramagnetic and without 
long-range order. This phase they denoted the "quantum Fermi liquid" 
(QFL). The QFL exists only above a critical value of Ur ~ 17~1. In this 
phase, the resistivity due to magnetic impurities is predicted to be 
anomalously large as compared to that of nonmagnetic impurities. 

5. SCATTERING BY P H O T O N S  

We now invoke the electron-phonon matrix element in (6). Equations 
(11) and (20) are now replaced by 

OP/Ot=47zN ' ~ q  [ ~ ' ( q ) ( h t o q / h t o D ) t / 2 ~  - '(q)l 2 6 ( q - k ' + k )  
k k' q 

x I f ( k ) - f ( k ' ) ]  {6(hto,~ + e(k) - e(k') - hq" Vo)~2n(htoq) + 1 ] } 

(23) 

which we shall once again evaluate in the limit ]Vo] 4 0 .  The phonon 
distribution function is the usual Bose-Einstein function, n(htoq)= 

822/77/1-2-27 
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[e/u''oq- 1 ] - ~. Then, in 3D in the so-called "adiabatic" limit (in which the 
ratio of speed of sound to Fermi velocity vanishes, s/vv ~ O) 

OP/t3t = - hvo(6na)- ' N -  ' ~ q I~tr(q)(co q/OJo)'/'- e -  I(q)12 (m*a2/h2)2 
q 

x coth(flhOJq/2)f(h2q2/8m * ) (24) 

hence 

l/r~.ph = h(6n~m*a) -I N - t  ~ q I~'(q)(COq/09o)l/2e-t(q)l:(m*a'-/h2)2 
q 

x coth(flhogq/2) f(h2q2/8m* ) (25a) 

and the resistivity is 

l/re.ph = h(6n~t2e2a)-IN-l ~. q ]r~/, "(q)(tOq/mO)I/2e-'(q)l 2 (m,a2/h2)2 
q 

• coth( flhmq/2 ) f(h2q2/8m * ) (26a) 

Consider the "high-temperature" regime in which hogq < k T  for all q ~< 2kz. 
For  , ,= 1 the high-temperature regime is defined by T > 0  D, where the 
Debye temperature is 0o - hogo/kB. If ~/'/e ~ const, the integration over q 
is performed as follows: defining f lhs /2-  qr  ~, the integral is (crudely) of the 
form 

r 2k~ q s f 2 k v / q r  
I =  Jo dq q4 coth q/qr = dx x 4 coth x (27) 

~0  

At high temperature, where 2kv ~ qr, I ~  ~qSr(2kv/qr)4 oc k 4- x T. Thus the 
high-temperature resistivity associated with the e lect ron-phonon initerac- 
tion is proport ional  to Tm*2~, -2/3. 

At T = 0 ,  q r ~ O  and I =  l /5(2kv) 5. As a result, the T = 0  resistivity is 
proport ional  to k v ~, i.e., is inversely proport ional  to ~/3. But aside from 
its dependence on ,,, this residual resistivity is finite and cannot be dis- 
tinguished from the contribution of impurities. (This result contrasts with 
the conventional transport theory, which predicts that the low-T electrical 
resistivity will vanish as T -~ at absolute zero in pure metals devoid of scat- 
tering centers.) To obtain the temperature dependence of the phonon 
resistivity at low temperatures within the present theory, one subtracts the 
T =  0 contribution from the total, to obtain a quanti ty proport ional  to 

I -  Io = f2/,~ dq q4(coth q / q r -  1) oc q5 r (28) 
~0 

which recovers the familiar result p -  Po oc T 5. 
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The crossover from the low-temperature p Gc T 5 to the high-tem- 
I perature p oc T behavior has been shown to occur at T,.,~ z 0o for a wide 

range of ordinary metals in which .~, = O(1 ).1~5~ It follows that for ~ ,~ 1, the 
crossover will be at T.,. ~ "~ODIlI I/3 

The corresponding expressions in 2D are 

l/re_p h = h(4rta2)-t(~tm , )  i 

I N - i  ~ q [~..(q)(t, q/~Oo)Jl2 ~- l(q)12(m,a2/h ,-),- coth( flhco q/2 ) X 

L_ q 

• I ak laf/akl Re(h->- (q/2) 2) "-~] (25b) 
and 

pr = h(4rca 2) i (~fle2) -1 

x I N - '  Z q Ir j/'- ~- J(q)l'-(m*a'-/h'-)'- coth( ~hog q/2 ) 
I_ q 

x f dk IOf/Ok[ Re(k'--(q/2) 2) 11"- 1 (26b) 

Thus, one estimates the high-T resistivity in 2D to be oc Tm*2/n. 
It is also possible to derive the resistivity of 2D electrons interacting 

with 3D phonons,  but the resulting expression, which includes elliptic func- 
tions, is rather involved and is omitted here for brevity. 

Our  formulas in the limit T =  0 indicate that the Fermi fluid loses its 
momentum at a finite rate owing to the zero-point fluctuations in the 
phonons. Conversely, conventional transport theory predicts re~.0h---, oo at 
T =  0. Thus, despite the qualitative overall agreement between our results 
and the conventional ones, there is need for reconciliation of the dis- 
crepancy at T =  0. We intend to reexamine this issue in the future. 

We also note that a theory of energy loss (transfer) from a heated 
electron fluid to the lattice via the e lec t ron-phonon interaction can also be 
formulated in similar fashion, al though this turns out to be even subtler 
than the analysis of momentum loss given here. This mechanism will also 
be treated in a separate publication. 
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